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Romero-Cañas2, Jose Luis Espinosa-Aranda2, Elena Hervas-Martin2, Zaid Towfic1, Damon Russell1, Joseph

Sauvageau1, Douglas Sheldon1, Mark Fernandez3, and Carrie Knox3

1Jet Propulsion Laboratory* California Institute of Technology, USA
2Ubotica Technologies, Ireland

3Hewlett Packard Enterprise

ABSTRACT

Future space missions can benefit from processing im-
agery onboard to detect science events, create insights,
and respond autonomously. This capability can enable
the discovery of new science. One of the challenges to
this mission concept is that traditional space flight hard-
ware has limited capabilities and is derived from much
older computing in order to ensure reliable performance
in the extreme environments of space, particularly radia-
tion. Modern Commercial Off The Shelf (COTS) proces-
sors, such as the Movidius Myriad X and the Qualcomm
Snapdragon, provide significant improvements in small
Size Weight and Power (SWaP) packaging. They offer
direct hardware acceleration for deep neural networks,
which are state-of-the art in computer vision. We de-
ploy neural network models on these processors hosted
by Hewlett Packard Enterprise’s Spaceborne Computer-2
onboard the International Space Station (ISS). We bench-
mark a variety of algorithms on these processors. The
models are run multiple times on the ISS to see if any er-
rors develop. In addition, we run a memory checker to
detect radiation effects on the embedded processors.

Key words: Deep Learning, Edge Processing, Space
Applications, Machine Learning, Artificial Intelligence,
COTS embedded processors.

1. INTRODUCTION

Deep space missions have limited contact with ground
operations teams, making it hard to account for a dy-
namic environment. This is due to the limited number
of Earth-based ground communication stations and geo-
metric constraints. Surface missions are typically com-
manded daily or every few days, and orbiters are typi-
cally commanded only weekly. Onboard autonomy can
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mitigate this by enabling spacecraft to autonomously re-
spond to a changing environment in between command
cycles. But traditional space flight hardware has very
limited computational capabilities. A new generation of
embedded processors, such as the Intel Movidius X [1],
and the Qualcomm Snapdragon 855 [2], enable fast on-
board inference by supporting neural networks directly in
hardware [3]. This technology promises more powerful
onboard autonomy with edge processing.

We benchmark deep learning inference on Movidius
Myriad X and Snapdragon processors onboard the ISS.
Hosting of these processors is enabled by Spaceborne
Computer-2 (SBC-2) by Hewlett Packard Enterprise [4].
Previously, these models have been deployed on the
ground. We run inference with these models at various
times to see if errors occur, and in addition, run algo-
rithms specifically designed to find memory errors, to get
an idea of possible radiation effects.

The ISS deployment is a step towards running such mod-
els operationally on a satellite, lander or rover. This
would enable onboard data analysis, targeted downloads,
commanding of space assets, and onboard science inter-
pretation.

2. PROCESSORS

The Qualcomm Snapdragon 855 has multiple subsys-
tems, which include a CPU, GPU, Compute Digital Sig-
nal Processor (DSP), and an AI Processor (AIP). The
CPU subsystem is made up of a heterogeneous cluster
of 8 ARM cores. One core operates at 2.8 GHz, three at
2.4 GHz, and four at 1.8 GHz. The Snapdragon also in-
cludes an Adreno GPU, which operates at 585 MHz and
is geared for floating-point processing. In general, GPUs
have been used widely for training and inference of neu-
ral networks, due to their parallelizable nature, and have
allowed for development of larger and more accurate net-
works. However, the Snapdragon Hexagon DSP is even



faster for inference than its GPU, due to its higher core
speed and long vector length SIMD (Single Instruction
Multiple Data) instructions for fixed-point computation.
The DSP includes four cores operating at 1.2-1.3 GHz.
The AIP adds accelerated computation for specific, com-
monly utilized, neural network functions. We compare
results using the CPU, GPU, DSP, and Neural Process-
ing Unit (NPU), which may include computation with
the AIP; the NPU is the API that can be used to select the
right component for a given task. The CPU and GPU sup-
port floating point numbers, while the DSP/NPU support
fixed-point only and thus models must be quantized [2].
For more information about the Snapdragon 855, please
see [5]. Snapdragon processors have been used in vehi-
cles, drones, and even the Mars Ingenuity Helicopter and
base station [6].

The Myriad X Vision Processing Unit (VPU) features a
Neural Compute Engine, which is a dedicated hardware
accelerator for performing neural networks inference, as
well as VLIW SIMD cores for accelerating computer vi-
sion algorithms. The VPU is programmable using Ubot-
ica’s CVAI Toolkit™. Half precision floating point is sup-
ported. The previous generation VPU, the Myriad 2, flew
on the on the PhiSat-1 satellite, a CubeSat mission from
the European Space Agency [3].

We compare results from the Snapdragon and Myriad
processors with an NVIDIA Jetson Nano and test lap-
top, both on the ground. The NVIDIA Jetson Nano fea-
tures a 128-core NVIDIA Maxwell™ GPU and Quad-
core ARM® A57 CPU that operates at 1.43 GHz. The
test laptop is a 2019 MacBook Pro, with a 2.4 GHz and
8-Core Intel i9 processor, running Ubuntu 18.04 in a
docker container. For future work, we plan to benchmark
with two additional more traditional ground testbed pro-
cessors: Rad750 [7] (used on many prior missions) and
Sabertooth [8] (which is being developed for future mis-
sions).

3. EXPERIMENTAL SETUP AND ISS DEPLOY-
MENT

Two Snapdragon 855 development boards (with radios
disabled) and two Movidius Myriad X Processors were
integrated with the HPE Spaceborne Computer-2, which
was launched on February 20th, 2021, as part of the
Cygnus NG-15 resupply mission to the ISS. Uplinks are
possible periodically to load new software. An additional
two Snapdragon 855 boards and two Myriad X Proces-
sors were included in HPE’s ground testbed.

We port trained deep learning models to formats that
can be run on the Myriad X and/or the Snapdragon, and
test locally on these processors. Snapdragon deep learn-
ing models are ported using the Qualcomm Neural Pro-
cessing Software Development Kit [9]. Myriad models
are ported using OpenVINO [10] and the Ubotica CVAI
Toolkit [11]. See Figures 1 and 2 for pictures of our local
hardware.

Figure 1. Movidius Myriad X.

Figure 2. Snapdragon 855 Development Board.

Once those models have been verified, JPL runs these
models on the HPE Ground Testbed, and then sends HPE
a test harness script to run. HPE tests on their Flight
Testbed (ground) before deploying on SBC-2 on the ISS.
Results are then sent back to JPL for interpretation.

4. PRIOR BENCHMARKING WORK

In [12], we show benchmarks for a set of deep learn-
ing models. We show energy and inference time on the
Snapdragon and Myriad X for Mars HiRISENET, which
is used to classify images collected by the High Resolu-
tion Imaging Experiment (HiRISE) instrument onboard
the Mars Reconnaissance Orbiter [13]. We found that
the low SWaP processors had only small errors (from the
quantization), with over 10x speed improvement com-
pared with the Snapdragon CPU. Compared to our test
laptop (MacOS 2019, 2.4 GHZ, 8-core), which required
2.3 J (includes monitor and other externals), the Snap-
dragon CPU required 0.5 J, but the DSP only required
0.016 J, the Snapdragon NPU required 0.014 J, and the
Myriad X required 0.032 J.



In addition to Mars HiRISENET, we benchmarked an
image segmentation model trained on imagery from
the Mars Science Laboratory (MSL) rover’s Navigation
Cameras [14]. The Snapdragon DSP was not able to
use a pre-quantized model, and this lead to high errors
(9.3% missed pixels). Also, the model had incompati-
ble layers with the Myriad X. Coming back to Earth, we
benchmarked a UAVSAR model trained to detect flood-
ing [15]. Error rates on the Snapdragon DSP/NPU and
Myriad X were small, with greater than 6x speed im-
provement over the test laptop. We also benchmarked
a single pixel model for super resolution [16] but found
this ran slower on the low SWaP processors, likely due to
the net’s small size and single-pixel nature.

In addition to our models for specific applications, we
benchmarked a set of standard deep learning models for
classification [17]. Transfer learning from pre-trained
models is often used for model development, so these re-
sults may help inform model choice.

In this paper, we present results for additional models
more recently tested. We also present results from mem-
ory check tests.

5. DEEP LEARNING MODELS AND BENCH-
MARKS

This paper shows benchmarked results for models trained
on Mars and Earth-based imagery. The Mars imagery
in this paper is from the MSL rover’s science cameras,
as opposed to the navigation cameras as in our prior
work [12]. For Earth-based models, we look at a model
for cloud classification, a model that predicts mixtures of
coral, algae, and sand, as well as a segmentation model
to detect ships in the ocean.

5.1. Mars MSLNets

The NASA Planetary Data System (PDS) maintains
archives of data collected by NASA missions, and pro-
vides access to millions of images of planets, moons,
comets, and other bodies to the general public. This in-
cludes images from the Mars Science Laboratory (MSL)
Curiosity rover’s science cameras. Users can interac-
tively search these images for classes of interest using
the PDS Image Atlas, which use the predictions from
MSLNet (https://pds-imaging.jpl.nasa.gov/search/).

MSLNet is used to classify images collected by the
Mast Camera (Mastcam) and the Mars Hand Lens Im-
ager (MAHLI) instruments mounted on the MSL Curios-
ity rover. Mastcam is a two instrument suite with left
and right-eye cameras, and MAHLI is a single focus-
able camera located at the end of the rover’s robotic arm.
MSLNet is actually made up of two networks: MSLNet1
and MSLNet2. MSLNet1 is trained on 19 classes, includ-
ing float rock, light-toned veins, sun, wheel, and wheel

(a) Arm cover (b) Dist. landscape (c) Drill hole

(d) Float rock (e) L.-toned veins (f) Other rover part

(g) Sun (h) Wheel (i) Wheel tracks

Figure 3. Example imagery from MSL Curiosity Rover’s
science cameras [13].

tracks [13]. If MSLNet1 predicts ”other rover parts”, the
image will be passed through MSLNet2 for finer grained
classification of 24 possible classes [18]. See Figure 3 for
some example images with their class.

Currently, these classifiers are used only on the ground
by the PDS Image Atlas, but running these classifiers di-
rectly onboard the rover could improve data collection
and enable autonomous tasking.

MSLNets were built with transfer learning from
AlexNet [19] using Caffe. Test images were 227x227
pixels and RGB. Models that are run on the Snapdragon
DSP/NPU must be quantized (fixed point), and on the
Myriad X must be transformed to half precision floating
point, both of which can lead to a classification discrep-
ancy. Models are quantized using a separate validation
dataset and quantization discrepancy errors are reported
on a held-out test set.

Benchmarking results are similar for both classifiers, as
they have the same model structure. Table 1 shows errors
and timing on a test set of 602 images, relative to a Linux
run on the test Mac laptop. Inference time is per image.
On the test laptop, the time reported is walltime.

Table 2 shows quantization discrepancy errors and timing
for MSLNet2, on 1,305 testset image chipouts.

The Snapdragon GPU has 5x speed improvement from
the Snapdragon CPU, and the DSP/NPU are 2x faster
than the GPU. The Myriad speed is similar to the Snap-
dragon GPU. Errors were low for all processors.

Snapdragon models have been run for 9 iterations on the



Table 1. Mars MSL1 Classi�er Benchmarks
Processor Errors Inference Time

MacBook Reference - 65.4 ms
Snapdragon CPU 0 86.6 ms
Snapdragon GPU 1 (0.2%) 16.2 ms
Snapdragon DSP 15 (2.5%) 7.6 ms
Snapdragon NPU 15 (2.5%) 7.6 ms

Myriad X 3 (0.5%) 16.1 ms
Jetson Nano CPU 2 (0.33%) 1122ms
Jetson Nano GPU 2 (0.33%) 286ms

Table 2. Mars MSL2 Classi�er Benchmarks
Processor Errors Inference Time

MacBook Reference - 69.1 ms
Snapdragon CPU 0 81.6 ms
Snapdragon GPU 1 (0.1%) 16.2 ms
Snapdragon DSP 27 (2.1%) 7.6 ms
Snapdragon NPU 27 (2.1%) 7.6 ms

Myriad X 7 (0.5%) 16.1 ms
Jetson Nano CPU 0 1109ms
Jetson Nano GPU 1 (0.1%) 242ms

ISS. Myriad models have been run for two iterations on
the ISS, 3 times for each iteration, for a total of 6 times.
No discrepancies have been found between ground and
ISS runs of these classi�ers.

5.2. Single Pixel Cloud Classi�er

SMICES is an instrument concept for a ”smart” deep
convective storm hunting radar [20] [21] [22]. In the
SMICES concept, a lookahead radiometer acquires data
to detect deep convective ice storms and a radar is used
to study detected storms in greater detail. The SMICES
machine learning classi�cation application [23] classi-
�es simulated radiometer data into �ve separate cloud
types to identify the location of the deep convective
storms. The application runs a random decision forest
(RDF), multi-layer perceptron (MLP), support vector ma-
chine (SVM), and nä�ve Bayes Gaussian classi�ers over
198,016 pixels with 8 bands of radiance. Each classi�er is
run on the Snapdragon CPU in a single threaded python
application and compared with performance on a refer-
ence laptop and Jetson Nano. Note that the deep learning
classi�ers here were not ported with the Qualcomm Neu-
ral Processing Software Development Kit (SDK), which
is what we use for all other models, but instead are ported
using the Python-for-Android routine by Kivy [24]. The
runtimes for each classi�er are listed in Table 3. Fu-
ture work involves porting with the Qualcomm SDK and
benchmarking on the Snapdragon GPU, DSP, and AIP.

The SMICES classi�ers have been run 9 times on the ISS,
and we have found no discrepancy between ground and
ISS runs.

Table 3. SMICES Classi�er Run Times
Classi�er Reference Snapdragon CPU Nano

RDF 0.39 0.5 s 0.5 s
MLP 0.31 0.6 s 1 s
SVM 365 s 1316.7 s 2719 s
Bayes 0.06 s 0.3 s 0.3 s

5.3. Spectral Unmixing

Earth and planetary sciences often rely upon the analysis
of spectroscopic data. Measured signals are calledspec-
tra and contain recognizable features or patterns that can
be used for composition analysis since different materials
re�ect, emit, or absorb energy in unique ways throughout
the electromagnetic spectrum.

This work addressesspectral unmixing, an approach for
estimating the proportions or fractional abundances of at
least two components in each spectrum (e.g., 60% mate-
rial A and 40% material B). Unmixing is more general
than conventional classi�cation as it models mixtures of
classes, as opposed to a single class (e.g. simply all ma-
terial A or all material B).

We benchmark the Deep Conditional Dirichlet Model
(DCDM) [25], which is a probabilistic deep learning
model for learning mixtures of classes. It has been used
for spectral unmixing and it can model both linear (non-
intimate, i.e. that the signal is the weighted sum by abun-
dance of the each element signature), and nonlinear (in-
timate) mixtures. This method treats each pixel individu-
ally, without looking at it's surrounding neighbors. As a
probabilistic method, it is robust to noise and also models
uncertainty propagation in the data.

We demonstrate performance using airborne data from
the NASA Earth Venture Suborbital-2 (EVS-2) Coral
Reef Airborne Laboratory (CORAL) mission [26]. The
CORAL mission focused on mapping three benthic
cover classes: coral, algae, and sand. Data is from
the NASA/JPL Portable Remote Imaging SpectroMeter
(PRISM) (Figure 4). We employ two �ight lines from
Heron Island, Australia on 17 September 2016 and Ka-
neohe Bay in Oahu, Hawaii on 6 March 2017. We use
benthic re�ectance products since they provide invari-
ance to water column properties. These products have
a 420–680 nm spectral range and consist of 92 bands.
The abundance maps were estimated and validated by
the CORAL mission with photomosaics collected in the
�eld [27]. The dataset that was used for the DCDM
consists of 12,000 representative PRISM spectra together
with their corresponding coral, algae, and sand fractional
abundances. The dataset split was performed pseudo-
randomly and as follows: 80% train, 10% validation, and
10% test.

Benchmarking results are shown in Table 4. We show
performance on the Snapdragon and test laptop, running
in batch mode (all pixels passed in at once). Runtime
is per-pixel, and MacBook time is wall time. The quan-
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